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Abstract. Electron transport in semiconductor quantum wires with parabolic confined
potentials is considered. Non-Markovian Langevin-like equations are derived. A correspondence
between the equations obtained and the balance equations for the non-equilibrium steady state is
recognized. It is shown that at high temperature the electron mobility remains almost unchanged
with increasing temperature. This is due to thermal fluctuations which affect the energy-loss
rate via electron–phonon scattering.

1. Introduction

Electron transport in one-dimensional (1D) and quasi-one-dimensional (Q1D) semiconductor
structures has attracted considerable attention over recent years. Early motivation was
provided by the suggestion that at low temperatures, when the Fermi surface is sharply
defined, the elastic impurity scattering will be drastically reduced [1]. In practice, there
are many features inhibiting the experimental verification of this prediction. For example,
the interface quality and the influence of contacts should be mentioned. Also, at low
temperatures a Luttinger liquid [2, 3] forms, which can change the transport characteristics.
However, quantum wires with very high electron mobility can be fabricated on the basis of
extremely pure GaAs/AlGaAs heterojunctions, where the effect of impurity on the electron
transport is strongly suppressed.

In the present work we study the dissipative electron transport in quantum wires by
means of microscopic theory proposed in [4–6]. We choose polar optical phonons as a
dissipative environment, because the interaction with these phonons is the basic mechanism
of scattering in the polar semiconductors from which quantum wires are usually produced.
The confined potential is assumed to be parabolic, which is very attractive from the
theoretical viewpoint, since it allows many properties to be calculated in a rigorous and
analytical fashion [7–10]. For instance, carriers confined in a parabolic potential with width
W and height11 only absorb light at the bare harmonic oscillator frequency defined as
ω0 = (811/mW

2)1/2, wherem is the effective electron mass [7]. Such potentials can be
realized experimentally by means of molecular-beam epitaxy [11, 12]. The presence of a
confined potential is neglected as far as the phonons are concerned. Recent calculations
of electron–optical phonon interactions based on a microscopic description of the phonons
show that the assumption of unmodified bulk phonon modes provides reasonable results for
the total scattering rates in GaAs/AlAs quantum wells and wires [13].

We obtain non-Markovian Langevin-like equations by means of which a unified analysis
of the kinetics and fluctuations in the systems of interest is possible. These equations provide
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the way for wide-ranging investigations of the electron transport and noise in quantum wires.
We show that in the steady state the equations obtained describe the balances of the force
and energy as well as is usually achieved on the basis of the Boltzmann equations [14] or
the Lei–Ting approach [15, 16]. In the present work we concentrate on the temperature
dependence of the linear electron mobility. This dependence was analysed in [16] in a
very sophisticated fashion. It was shown that at high lattice temperatures the electron
mobility is lower than in bulk materials. The advantage of our approach in comparison
to that of Lei and Ting is the taking into account of the fluctuation effects. These effects
are very important for 1D systems. For example, if they are included the polarizability
becomes free of divergence and convenient for calculations [17]. In our case we show that
fluctuations modify the matrix element of the electron–phonon interaction, which changes
the temperature dependence of the electron mobility drastically.

As may be expected, in the initial interval, increasing of the lattice temperature is
accompanied by decreasing of the electron mobility, because the number of phonons in
each mode interacting with electrons, and, therefore, the energy-loss rate via electron–
phonon scattering increase. However, the space scale connected with thermal fluctuations
in the transverse degree of freedom increases as well. This leads to the suppression of
the interaction with the phonon modes with small lengths (or large wave vectors) after
ensemble averaging. These two effects compete, which gives rise to a horizontal region
in the temperature dependence of the electron mobility at high temperature. We find the
temperature dependences at different frequencies of the confined potential, and also show
that the electron mobility is higher at smaller frequencies, in agreement with the results
of [16].

2. Equations

Let the Hamiltonian of the system under study be written in the form

H = H0+HT +Hint (1)

where

H0 = p2

2m
+ mω

2
0(x

2+ y2)

2
− eEz (2)

is the Hamiltonian of an electron driven by the electric field along thez-axis and confined
by the parabolic potential in the lateral plane.HT is the thermal bath Hamiltonian andHint
describes the interaction of an electron with the dissipative environment. For the case of
polar optical phonons this term has the form

Hint (r, t) = −L−3/2
∑
k

Qk(t) exp{ik · r(t)}

= e
(

2πh̄�0

L3κ∗

)1/2∑
k

i

k
(bk(t)e

ik·r(t) − b+−k(t)e−ik·r(t)) (3)

where 1/κ∗ = 1/κ∞−1/κ0, whereκ∞ andκ0 are the hf and static permittivities of a crystal,
respectively, andL3 is its volume,h̄�0 is an optical phonon energy, andb+k (t) andbk are
the creation and annihilation operators for phonons.

According to the microscopic theory proposed in [4–6], we can obtain the following
non-Markovian Langevin-like equations:

z̈(t)− 1

mL3

∑
k

ikz

∫
dt1

(
Mk(t, t1)

i

h̄
[eik·r(t), e−ik·r(t1)]−
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+ ϕk(t, t1)1

2
[eik·r(t), e−ik·r(t1)]+

)
= e

m
E + ξz(t) (4)

r̈⊥(t)+ ω2
0r⊥(t)−

1

mL3

∑
k

ik⊥ cosα
∫

dt1

(
Mk(t, t1)

i

h̄
[eik·r(t), e−ik·r(t1)]−

+ ϕk(t, t1)1

2
[eik·r(t), e−ik·r(t1)]+

)
= ξ⊥(t) (5)

where r2
⊥ = r2

x + r2
y , k2

⊥ = k2
x + k2

y , α is the angle betweenr⊥ and k⊥, [. . . , . . .]− and
[. . . , . . .]+ indicate a commutator and an anticommutator, respectively, and〈. . .〉 indicates
a thermal averaging.ϕk(t, t1) andMk(t, t1) are a linear response function and a correlation
function of the unperturbed thermal bath variables, respectively. For the case of polar
optical phonons we find [6]

ϕk(τ ) = 4π�0e2

k2κ∗
sin(�0τ)η(τ ) (6)

Mk(τ) = 2πh̄�0e2

k2κ∗
cos(�0τ) coth

h̄�0

2T
. (7)

HereT is the lattice temperature andη(τ) is a unit step function.
Fluctuation sources obtained from microscopic considerations have exact forms [4],

which makes the calculation of correlation functions of any order possible. For example,
the second correlator ofξz has the following form for the case of weak electron–environment
coupling [6]:〈

1

2
[ξz(t), ξz(t1)]+

〉
= 1

m2L3

∑
k

k2
z

2
(Mk(t, t1)〈[eik·r(t), e−ik·r(t1)]+〉

+ Rk(t, t1)〈[eik·r(t), e−ik·r(t1)]−〉). (8)

Here

Rk(τ) = 2πh̄�0e2

ik2κ∗
sin(�0τ). (9)

In deriving equations (4), (5), and (8) we have taken into account the influence of an
electron on the heat bath, and the fact that the statistics of the unperturbed heat bath variables
is Gaussian [4]. The latter assumption is valid if we neglect phonon anharmonicity.

Our prime interest here is in the electron transport along thez-axis. Separating in
equation (4) the mean (z̄) and fluctuation (̃z) parts, we obtain

m ¨̄z(t) = eE −G( ˙̄z) (10)

¨̃z(t)+
∫

dt1 γ (t − t1) ˙̃z(t1) = ξz(t). (11)

Equation (10) presents Newton’s second law, whereG( ˙̄z) is a friction force. Equation
(11) is the generalized non-Markovian Langevin equation. Going to a Fourier transform,
we find the expression for the velocity fluctuation spectrum:〈

1

2
[Ṽz(ω), Ṽz(0)]+

〉
= Kz(ω)

ω2+ γ 2(ω)
(12)

whereKz(ω) is the spectral density of fluctuation sources:

Kz(ω) =
∫ ∞
−∞

dτ eiωτ

〈
1

2
[ξz(0), ξz(τ )]+

〉
. (13)
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It should be noticed that both the fluctuation source and the damping coefficient in
the Langevin equation, as well as the friction force, are obtained from the microscopic
considerations of the electron–phonon interaction. The concrete forms of these values will
be found in the next section for the non-equilibrium steady state.

3. Steady-state transport

In this section we consider the non-equilibrium steady state when the electron has a fixed
drift velocity Vd and a fixed level of velocity fluctuationsV 2

T = 〈Ṽ 2
z 〉 along thez-axis (or a

fixed electron temperatureTe = mV 2
T ) due to the thermalization process. The drift velocity

can be found from equation (10) rewritten for the steady state as

G(Vd) = eE (14)

where the friction forceG(Vd) is

G(Vd) = 1

2
√

2πVT

e2�0

κ∗

∫ kD

0
k⊥ dk⊥

∫ kD

0
dkz

1

k2
e−k

2
⊥R

2
∞∑
l=0

Il

{
ωk⊥
ω0

(
sinh

h̄ω0

2T

)−1}
×
((

coth
h̄�0

2T
+ 1

)(
exp

{
h̄ω0

2T
l

}(
exp

{
− (ωkz − kzVd +�0+ lω0)

2

2k2
zV

2
T

}
− exp

{
− (ωkz + kzVd +�0+ lω0)

2

2k2
zV

2
T

})
+ exp

{
−h̄ω0

2T
l

}(
exp

{
− (ωkz − kzVd +�0− lω0)

2

2k2
zV

2
T

}
− exp

{
− (ωkz + kzVd +�0− lω0)

2

2k2
zV

2
T

}))
+
((

coth
h̄�0

2T
− 1

)(
exp

{
h̄ω0

2T
l

}(
exp

{
− (ωkz − kzVd −�0+ lω0)

2

2k2
zV

2
T

}
− exp

{
− (ωkz + kzVd −�0+ lω0)

2

2k2
zV

2
T

})
+ exp

{
−h̄ω0

2T
l

}(
exp

{
− (ωkz − kzVd −�0− lω0)

2

2k2
zV

2
T

}
− exp

{
− (ωkz + kzVd −�0− lω0)

2

2k2
zV

2
T

}))))
. (15)

Hereωk⊥ = h̄k2
⊥/2m, ωkz = h̄k2

z /2m, R2 = (h̄/2mω0) coth(h̄ω0/2T ), andτ = t − t1, and
the Il(x) are the modified Bessel functions. The calculation of this expression is presented
in the appendix.

For the case of weak electron–phonon coupling, the dispersion of the electron velocity
fluctuations is obtained as follows [6]:

V 2
T =

Kz(0)

2γ (0)
(16)

where the expressions forKz(0) andγz(0) are presented in the appendix as well.
To gain a better understanding and to compare with standard approaches, we rewrite

equation (16) as an energy balance equation:

PE = Pph + Posc (17)
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where

PE = eEVd = G(Vd)Vd (18)

is an energy supplied by the external force,

Pph = h̄�0

∑
k

dNk
dt
= h̄�0

∑
k

2π

h̄

2πe2h̄�0

κ∗k2

1√
2πh̄kzVT

exp{−k2
⊥R

2}

×
∞∑
l=0

Il

{
ωk⊥
ω0

(
sinh

h̄ω0

2T

)−1}(
(N0+ 1)

(
exp

{
h̄ω0

2T
l

}
×
(

exp

{
− (ωkz − kzVd +�0+ lω0)

2

2k2
zV

2
T

}
+ exp

{
− (ωkz + kzVd +�0+ lω0)

2

2k2
zV

2
T

})
+ exp

{
−h̄ω0

2T
l

}(
exp

{
− (ωkz − kzVd +�0− lω0)

2

2k2
zV

2
T

}
+ exp

{
− (ωkz + kzVd +�0− lω0)

2

2k2
zV

2
T

}))
− N0

(
exp

{
h̄ω0

2T
l

}(
exp

{
− (ωkz − kzVd −�0+ lω0)

2

2k2
zV

2
T

}
+ exp

{
− (ωkz + kzVd −�0+ lω0)

2

2k2
zV

2
T

})
+ exp

{
−h̄ω0

2T
l

}(
exp

{
− (ωkz − kzVd −�0− lω0)

2

2k2
zV

2
T

}
+ exp

{
− (ωkz + kzVd −�0− lω0)

2

2k2
zV

2
T

})))
(19)

is an energy loss rate via electron–phonon scattering, and

Posc =
∑
k

2π

h̄

2πe2h̄�0

κ∗k2

1√
2πh̄kzVT

exp{−k2
⊥R

2}

×
∞∑
l=0

(h̄lω0)Il

{
ωk⊥
ω0

(
sinh

h̄ω0

2T

)−1}(
(N0+ 1)

(
exp

{
h̄ω0

2T
l

}
×
(

exp

{
− (ωkz − kzVd +�0+ lω0)

2

2k2
zV

2
T

}
+ exp

{
− (ωkz + kzVd +�0+ lω0)

2

2k2
zV

2
T

})
− exp

{
−h̄ω0

2T
l

}(
exp

{
− (ωkz − kzVd +�0− lω0)

2

2k2
zV

2
T

}
+ exp

{
− (ωkz + kzVd +�0− lω0)

2

2k2
zV

2
T

}))
+ N0

(
exp

{
h̄ω0

2T
l

}(
exp

{
− (ωkz − kzVd −�0+ lω0)

2

2k2
zV

2
T

}
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+ exp

{
− (ωkz + kzVd −�0+ lω0)

2

2k2
zV

2
T

})
− exp

{
−h̄ω0

2T
l

}(
exp

{
− (ωkz − kzVd −�0− lω0)

2

2k2
zV

2
T

}
+ exp

{
− (ωkz + kzVd −�0− lω0)

2

2k2
zV

2
T

})))
(20)

is an energy transferred to the transverse degrees of freedom. Here

N0 = (exp{h̄�0/T } − 1)−1

is an equilibrium phonon distribution function.
As may be seen from these expressions, if we neglect fluctuationsV 2

T → 0, then

1√
2πh̄kzVT

exp

{
− (ωkz ± kzVd ±�0± lω0)

2

2k2
zV

2
T

}
→ δ(h̄ωkz ± h̄kzVd ± h̄�0± h̄lω0)

i.e. the electron–phonon interaction is described by the well-known Fermi ‘golden rule’ with
the modified matrix element

|S(k)|2 = 2πe2h̄�0

κ∗k2
exp

{
− h̄k2

⊥
2mω0

coth

(
h̄ω0

2T

)}
Il

{
ωk⊥
ω0

(
sinh

h̄ω0

2T

)−1}
. (21)

Of special interest is the factor

exp

{
− h̄k2

⊥
2mω0

coth

(
h̄ω0

2T

)}
in the modified matrix element. It arises even ifl = 0, i.e. if the phonon emission
(absorption) is not attended by transfers between the oscillator levels. This factor is due
to ensemble averaging, which suppresses the interaction with phonon modes with large
transverse wave vectors, i.e. with wavelengths much less than the root mean square of the
transverse coordinate fluctuations.

The balance equations derived look like that obtained from the Boltzmann equations
[14] or from the Lei–Ting approach [15]. However, if thermal fluctuations are taken
into consideration, this affects the transport characteristics of quantum wires significantly.
Longitudinal fluctuations smear outδ-functions while transverse fluctuations modify the
matrix element of the electron–phonon interaction.

It is interesting to note that in the above expressions the terms corresponding to the
excitation of the transverse degrees of freedom are multiplied by the factor exp{h̄lω0/2T }
and the terms corresponding to the damping of the transverse degrees of freedom are
multiplied by the factor exp{−h̄lω0/2T }. The conditionV 2

T = T/m is fulfilled for the
equilibrium case(Vd = 0) due to these factors.

4. Results and discussion

In the previous section we have derived equations describing steady-state transport in
semiconductor quantum wires with parabolic confined potentials. The detailed analysis of
these equations will be very interesting, but in the present work we concentrate on the study
of the temperature dependence of the electron mobility. The weak-field regime is considered,
so that the linear mobilityµ = Vd/E describes the electron transport completely. Solving
equations (14) and (16) self-consistently, we have foundµ as a function of the lattice
temperatureT . This dependence is presented in figure 1 for the drift velocityVd = 0.01V0,
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Figure 1. The temperature dependences of the linear electron mobility at different frequencies of
the confined potential. The temperature is normalized toT0 = 408 K, and the electron mobility
is normalized toµ0 = 836 cm2 V−1 s−1.

whereV0 = (h̄�0/2m)1/2. The temperature is normalized toT0 = h̄�0/kB , and the electron
mobility is normalized toµ0 = V0/E0, whereeE0 = λ(mh̄�3

0/π)
1/2, and

λ = e2

2κ∗h̄�0

(
2m�0

h̄

)1/2

is the constant of the electron–phonon interaction. If the quantum wire under study is
fabricated on the basis of a GaAs/AlAs heterojunction, thenm = 0.067me, T0 = 408 K,
1/κ∗ = 0.0069, λ = 0.069 � 1, E0 = 6560 V cm−1, V0 = 2.2 × 107 cm s−1, and
µ0 = 836 cm2 V−1 s−1.

The solid line represents the typical experimental situation, where the parabolic potential
has the widthW = 4× 10−5 cm and the height11 = 150 meV, which gives the value
ω0 = (811/mW

2)1/2 = 1.4× 1013 s−1.
One can see that increasing of the temperature is accompanied by decreasing of the

linear mobility over the initial interval, and that subsequently the curve flattens out. This
horizontal region is caused by the competition of two effects. Increasing of the temperature
leads to increasing of the phonon number in each mode interacting with the electron, and
meanwhile leads to increasing of the variance of the transverse coordinate fluctuations
R2 = (h̄/2mω0) coth(h̄ω0/2T ). These fluctuations suppress the interaction with the phonon
modes with small wavelengths as a result of ensemble averaging. The first effect increases
the energy-loss rate via electron–phonon scattering, while the second one decreases this
rate.

To compare our results with those of Wang and Lei [16], we also present the temperature
dependence of the electron mobility for another frequency of the confined potential (the
dashed line). As may be seen, the smaller the confined frequency, the larger the electron
mobility, which is in agreement with the conclusions of [16].

In closing, it cannot be too highly stressed that fluctuation effects are of fundamental
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importance in the physics of semiconductor nanostructures. It may be safely asserted that
a better understanding will be gained if they are taken into consideration.
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Appendix. Calculation of the expressions for the friction force, the damping
coefficient, and the spectral density of the fluctuation sources

To calculate these expressions, we assume that the non-Markovian equations (4) and (5)
have a some scale of time non-localityτc and neglect the relaxation and the influence of
fluctuation sources in the time period aroundτc. In this case the time evolution of the
coordinate operators is described by the following expressions:

z(t) = z(t1)+ Vz(t1)(t − t1) (A1)

r⊥(t) = r⊥(t1) cosω0(t − t1)+ V⊥(t1)
ω0

sinω0(t − t1). (A2)

We use the Baker–Hausdorff formula

e−ik·r(t1)eik·r(t) = exp{ik · (r(t)− r(t1))} exp

{
k2

2
[r(t1), r(t)]−

}
and the following formulae for the commutators([A, b]− = [B, a]− = 0):

[AB, ab]− =
1

2
([A, a]−[B, b]+ + [A, a]+[B, b]−)

[AB, ab]+ =
1

2
([A, a]+[B, b]+ + [A, a]−[B, b]−).

As a result we obtain the expressions for the commutator and anticommutator:

[exp{ik · r(t)}, exp{−ik · r(t1)}]+ =
(

cos

(
h̄k2

z

2m
τ

)
cos

(
h̄k2
⊥

2mω0
sinω0τ

)
− sin

(
h̄k2

z

2m
τ

)
sin

(
h̄k2
⊥

2mω0
sinω0τ

))
3⊥(t, t1)3z(t, t1) (A3)

[exp{ik · r(t)}, exp{−ik · r(t1)}]− = 2

i

(
cos

(
h̄k2

z

2m
τ

)
sin

(
h̄k2
⊥

2mω0
sinω0τ

)
+ sin

(
h̄k2

z

2m
τ

)
cos

(
h̄k2
⊥

2mω0
sinω0τ

))
3⊥(t, t1)3z(t, t1). (A4)

Hereτ = t − t1,

3⊥(t, t1) = exp{ik⊥ · (r⊥(t)− r⊥(t1))}
3z(t, t1) = exp{ikz(z(t)− z(t1))}.

We separate the functions3⊥(t, t1) and3z(t, t1) into mean and fluctuation parts:

3⊥(t, t1) = 3̄⊥(t, t1)+ 3̃⊥(t, t1)
3z(t, t1) = 3̄z(t, t1)+ 3̃z(t, t1).
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The function3̄z(t, t1) may be written as

3̄z(t, t1) = exp{ikzVdτ }2Vz(kz, τ )

where

2Vz(kz, τ ) = 〈exp{ikzṼzτ )}〉
is a generating function for velocity fluctuations along thez-axis. If the velocity fluctuations
are Gaussian, this function has the form

2Vz(kz, τ ) = exp

{
−k

2
z

2
V 2
T τ

2

}
. (A5)

Thus

3̄z(t, t1) = exp{ikzVdτ } exp

{
−k

2
z

2
V 2
T τ

2

}
(A6)

3̃z(t, t1) = ikz(z(t)− z(t1))3̄z(t, t1). (A7)

The validity of the Gaussian approximation was discussed in [6]. At least for the case of
a weak electric field when the current–voltage characteristic is ohmic we can assume the
velocity fluctuation to be Gaussian without serious consequences. It is evident that

τc =
√

2

kzVT
.

Let us next consider the motion in the lateral plane. We separater⊥(t) into mean
(r̄⊥(t)) and fluctuation(r̃⊥(t)) parts. The amplitude of the oscillation will be considered
to be small, and we can expand the function exp{ik⊥ · (r̄⊥(t)− r̄⊥(t1))}:

exp{ik⊥ · (r̄⊥(t)− r̄⊥(t1))} = 1+ ik⊥ ·
(
(1− cosω0τ)r̄⊥ + sinω0τ

ω0
V̄⊥

)
In the case of Gaussian fluctuations we can write

〈exp{ik⊥ · (r̃⊥(t)− r̃⊥(t1))}〉 = exp

{
−k

2
⊥
2
(〈r̃2
⊥(t)〉 + 〈r̃2

⊥(t1)〉 − 〈[r̃⊥(t), r̃⊥(t1)]+〉)
}
.

(A8)

The non-equilibrium state in the lateral plane is induced by the non-linearity of the
electron–environment interaction. Because of this, in the case of weak coupling and a weak
field the transverse motion in the time period aroundτc may be considered to be equilibrium
motion. Therefore, we can find the correlator of the coordinate fluctuations by means of
the linear fluctuation-dissipation theorem:〈

1

2
[r̃⊥(t), r̃⊥(t1)]+

〉
= R2 cosω0τ (A9)

where

R2 = h̄

2mω0
coth

(
h̄ω0

2T

)
.

HereT is a temperature of the thermal bath. Finally we obtain

3̄⊥(t, t1) =
(

1+ ik⊥ cosα

(
(1− cosω0τ)r̄⊥ + sinω0τ

ω0
V̄⊥

))
exp{−k2

⊥R
2(1− cosω0τ)}.

(A10)
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To ease the calculation, we rewrite the equations as follows:

cos

(
h̄k2
⊥

2mω0
sinω0τ

)
exp

{
h̄k2
⊥

2mω0
cosω0τ coth

h̄ω0

2T

}
= I0

{
h̄k2
⊥

2mω0

(
sinh

h̄ω0

2T

)−1}
+ 2

∞∑
l=1

Il

{
h̄k2
⊥

2mω0

(
sinh

h̄ω0

2T

)−1}
× cos(lω0τ) cosh

(
h̄ω0

2T
l

)
(A11)

sin

(
h̄k2
⊥

2mω0
sinω0τ

)
exp

{
h̄k2
⊥

2mω0
cosω0τ coth

h̄ω0

2T

}
= 2

∞∑
l=1

Il

{
h̄k2
⊥

2mω0

(
sinh

h̄ω0

2T

)−1}
sin(lω0τ) sinh

(
h̄ω0

2T
l

)
(A12)

where theIl{x} are modified Bessel functions.
Substituting the commutators and the functionsϕk(τ ),Mk(τ), andRk(τ) into equations

(4) and (5) and integrating with respect toτ , we finally obtain the expressions for the
friction forceG(Vd) (15) as well as for the damping coefficient and the spectral density of
fluctuation sources at zero frequency,γ (0) andK(0), respectively:

Kz(0) = 1

2
√

2πVT

h̄e2�0

m2κ∗

∫ kD

0
k⊥ dk⊥

∫ kD

0
kz dkz

1

k2
e−k

2
⊥R

2
∞∑
l=0

Il

{
ωk⊥
ω0

(
sinh

h̄ω0

2T

)−1}
×
((

coth
h̄�0

2T
+ 1

)(
exp

{
h̄ω0

2T
l

}(
exp

{
− (ωkz − kzVd +�0+ lω0)

2

2k2
zV

2
T

}
+ exp

{
− (ωkz + kzVd +�0+ lω0)

2

2k2
zV

2
T

})
+ exp

{
−h̄ω0

2T
l

}(
exp

{
− (ωkz − kzVd +�0− lω0)

2

2k2
zV

2
T

}
+ exp

{
− (ωkz + kzVd +�0− lω0)

2

2k2
zV

2
T

}))
+
((

coth
h̄�0

2T
− 1

)(
exp

{
h̄ω0

2T
l

}(
exp

{
− (ωkz − kzVd −�0+ lω0)

2

2k2
zV

2
T

}
+ exp

{
− (ωkz + kzVd −�0+ lω0)

2

2k2
zV

2
T

})
+ exp

{
−h̄ω0

2T
l

}(
exp

{
− (ωkz − kzVd −�0− lω0)

2

2k2
zV

2
T

}
+ exp

{
− (ωkz + kzVd −�0− lω0)

2

2k2
zV

2
T

})))
(A13)

γz(0) = 1

2
√

2πV 3
T

e2�0

mκ∗

∫ kD

0
k⊥ dk⊥

∫ kD

0
dkz

1

kzk2
e−k

2
⊥R

2
∞∑
l=0

Il

{
ωk⊥
ω0

(
sinh

h̄ω0

2T

)−1}
×
((

coth
h̄�0

2T
+ 1

)(
exp

{
h̄ω0

2T
l

}
×
(
(ωkz − kzVd +�0+ lω0) exp

{
− (ωkz − kzVd +�0+ lω0)

2

2k2
zV

2
T

}
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+ (ωkz + kzVd +�0+ lω0) exp

{
− (ωkz + kzVd +�0+ lω0)

2

2k2
zV

2
T

})
+ exp

{
−h̄ω0

2T
l

}(
(ωkz − kzVd +�0− lω0)

× exp

{
− (ωkz − kzVd +�0− lω0)

2

2k2
zV

2
T

}
+ (ωkz + kzVd +�0− lω0) exp

{
− (ωkz + kzVd +�0− lω0)

2

2k2
zV

2
T

}))
+
((

coth
h̄�0

2T
− 1

)(
exp

{
h̄ω0

2T
l

}
×
(
(ωkz − kzVd −�0+ lω0) exp

{
− (ωkz − kzVd −�0+ lω0)

2

2k2
zV

2
T

}
+ (ωkz + kzVd −�0+ lω0) exp

{
− (ωkz + kzVd −�0+ lω0)

2

2k2
zV

2
T

})
+ exp

{
−h̄ω0

2T
l

}(
(ωkz − kzVd −�0− lω0)

× exp

{
− (ωkz − kzVd −�0− lω0)

2

2k2
zV

2
T

}
+ (ωkz + kzVd −�0− lω0) exp

{
− (ωkz + kzVd −�0− lω0)

2

2k2
zV

2
T

})))
.

(A14)
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